

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 10202-10210

Rapid access to 3-(*N*-substituted)-aminoquinolin-2(1*H*)-ones using palladium-catalyzed C–N bond coupling reaction

Samir Messaoudi,^{a,b} Davide Audisio,^b Jean-Daniel Brion^{b,a} and Mouâd Alami^{a,b,*}

^aCNRS, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, rue J.B. Clément, F-92296 Châtenay-Malabry, France

^bUniv Paris-Sud, BioCIS UMR 8076, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, rue J.B. Clément,

F-92296 Châtenay-Malabry, France

Received 27 June 2007; revised 20 July 2007; accepted 23 July 2007 Available online 29 July 2007

Abstract—A series of 3-(*N*-substituted)-aminoquinolin-2(1*H*)-ones have been synthesized by the palladium-catalyzed C–N coupling reaction starting from 3-bromoquinolin-2-(1*H*)-ones. Various nucleophiles including amines, amides, sulfonamides, carbamates and ureas have been used successfully. In all the cases, the reactions take place rapidly in 1,4-dioxane and proceed in good to excellent yield using palladium acetate as a catalyst, Xantphos as a ligand and Cs_2CO_3 as a base.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Quinolin-2(1*H*)-ones are an important class of heteroaromatic compounds.¹ As isosteres of coumarin, quinolinones display a broad range of biological activities (e.g., antiviral,² antitumoral³) and a number of analogues of this class of heterocyclic structure have been reported as lead compounds or are currently undergoing clinical trials.⁴ The growing importance of these pharmaceutical compounds has led to the development of new methods for their synthesis.⁵

Although quinolin-2(1*H*)-ones exhibit a wide range of biological activities, to date there have been a limited number of methods to prepare 3-(*N*-substituted)-aminoquinolin-2(1*H*)ones. The main routes to these heterocyclic structures are reduction of 3-nitroquinolinones into 3-aminoquinolinones,⁶ or Hofmann rearrangement of quinolinone-3-carboxylic acid derivatives followed by further N-functionalization.⁷ An alternative route consists of cyclization of a suitable *N*-chloroacetyl-*o*-aminobenzophenone precursor to form α -pyridinium salt followed by hydrazinolysis.^{4d} All these multi-step procedures, however, are often moderate to low yielding, and the variety of substrates is very limited.

In an ongoing medicinal chemistry programme, we required the synthesis of 3-(N-acyl)-, 3-(N-sulfonamyl)- and 3-(N-aryl)-aminoquinolin-2(1H)-ones as analogues of novobiocin

that target the hsp90, an exciting new target in cancer drug discovery.⁸ As these compounds are not easily accessible by current methodology, our goal was to explore the palladium-catalyzed C–N bond coupling reaction starting from 3-haloquinolin-2(1H)-ones. The latter are of particular interest, in that the coupling would offer a convergent and straightforward approach to various 3-(*N*-substituted)-aminoquinolin-2(1H)-ones.

Although significant advances have occurred in the metalcatalyzed⁹ amination or amidation of aryl halides during the last decade, application of this coupling to various heterocyclic structures is still a relatively unexplored process.¹⁰ To our knowledge, palladium-catalyzed C–N bond-forming reactions between 3-haloquinolin-2(1*H*)-ones¹¹ and nucleophiles including amines, amides, sulfonamides and carbamates are unknown. Herein we report our studies on these useful reactions.

2. Results and discussion

To optimize conditions for the preparation of aminoquinolin-2(1*H*)-one **3a**, the coupling of 3-bromoquinolin-2(1*H*)one **1a** with 4-methoxybenzamide **2a** was initially selected as a model reaction for investigating the effects of various ligands (Fig. 1), palladium sources and bases. The results are summarized in Table 1.

As can seen from Table 1, the reaction of **1a** with **2a** was initially examined under the procedure developed by Buchwald¹² for the amidation of aryl halides (Pd(OAc)₂, Xantphos,¹³ Cs₂CO₃ in 1,4-dioxane at 100 °C). We were

Keywords: Palladium; C–N bond coupling reaction; Bromoquinolin-2-(1*H*)-ones; 3-(*N*-Substituted)-aminoquinolin-2-(1*H*)-ones.

^{*} Corresponding author. Tel.: +33 1 46835887; fax: +33 1 46835828; e-mail: mouad.alami@u-psud.fr

^{0040–4020/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.07.085

Figure 1. Supporting ligands used in this study.

 Table 1. Optimization coupling reaction of 1a with 4-methoxybenzamide

 2a under various conditions^a

- Reactions of **1a** (1.0 mmol) with 4-methoxybenzamide **2a** (1.5 mmol) were performed in a sealed Schlenk tube at 100 °C for 10 h in dioxane (2 mL) by using [Pd] (5 mol %), ligand (5 mol %) and base (2 mmol).
- ^b Conversion was determined by ¹H NMR in the crude reaction mixture and was based on remaining **1a**.
- ^c Isolated yields.
- ^d No reaction occurred at room temperature.
- ^e No reaction occurred without palladium catalyst.
- f Yield not determined.
- ^g dppf: diphenylphosphino-ferrocene.
- ^h Reproducible result after three runs and starting material was recovered unchanged.

pleased to find that these conditions provided the most generally successful results. Complete conversion of 1a was observed after 10 h using only a 1:1 ratio of Pd/L and the expected coupling product was formed in 95% yield (Table 1, entry 1). It should be noted that no reaction occurred without palladium catalyst. Changing the bidentate ligand phosphine to the sterically hindered monodentate ligand Xphos14 also led to total conversion although the yield of 3a was slightly lower (entry 3). The use of other bidentate phosphine ligands such as DPEphos, BINAP or dppf, however, induced a lowering of the conversion rate (entries 4-6). It is interesting to note that in the coupling of 1a with 2a, the source of palladium used has an important influence on the reaction rate. Thus, a slow rate was observed when running the reaction with Pd₂(dba)₃ instead of Pd(OAc)₂ in combination with Xantphos ligand (entry 2). This result clearly indicated that in the present reaction, the catalytic activity of $Pd(OAc)_2$ proved to be superior to $Pd_2(dba)_3$. Finally, use of bases such as K₃PO₄ and K₂CO₃ was found to be highly effective (entries 8 and 9), whereas Na₂CO₃ did not promote the coupling reaction (entry 7).

With a viable coupling procedure in hand, attention was turned to the generality of the process, and the couplings

Figure 2. 3-Bromoquinolin-2(1H)-ones 1 used in this study.

of structurally diverse nucleophiles with some 3-bromoquinolin-2(1H)-ones **1** were studied (Fig. 2).

Results summarized in Table 2 show that the optimized conditions described above proved to be general for the coupling with a large variety of nucleophiles. The coupling was found to be compatible with primary aromatic and aliphatic amides (entries 1–3) providing in excellent yields the corresponding coupling products **3a–c**.

The reaction was also effective with cyclic amides (entry 4) as well as with functionalized primary amides (entries 5 and 6), although the yields were slightly lower.

Under our optimal conditions, the reaction selectivity was investigated with substrate **1d** containing two carbon-bromine atoms. The coupling proceeded at the more activated C-3 position and yielded the mono-substitution product **3g** (44%, entry 7) together with the bis-coupling one bis-**3g** (27%). C–N bond-forming reaction was also studied with benzyl carbamate (entry 8) as well as with the less nucleophilic alkyl- or arylsulfonamides (entries 9–12). These substrates also proved to be viable nucleophiles for the coupling reaction and in most cases, good yields of coupling products **3h–I** were obtained. Finally, the C–N bond-forming reactions were examined using acyclic urea and we found that this amide analogue was doubly heteroarylated in good yields (entry 13).

The reaction was next carried out with a series of primary and secondary amines. As shown in Table 3, various 3-(N-alkyl)and 3-(N-aryl)-aminoquinolin-2(1H)-one derivatives 4 were obtained in good yields by using $Pd(OAc)_2$ as the palladium source, Xantphos as the ligand, Cs₂CO₃ as the base and 1,4dioxane as the solvent. Under these conditions, anilines proved to be suitable substrates for this C-N bond-forming reaction affording the coupling products in good yields (entries 1 and 2). We were pleased to observe that the ethoxycarbonyl group was tolerated in the presence of our catalyst system (entry 2). Similarly, primary alkyl- and benzylamines worked well in this coupling, although the amines containing a secondary carbon atom in the α -position gave slightly lower reaction yields (entries 4 and 5). Finally, secondary cyclic amines showed similar reaction activity relative to the other primary aliphatic and aromatic amines (entry 7). For substrate 1d containing two C-Br substituents, the reaction selectivity was examined with morpholine. A 1:1 ratio of 1d/ morpholine gave selectively the monocoupling product 4h (39%, not shown in table), clearly indicating that the C-3 position is more electrophilic than the C-7 position. Increasing the ratio to 1:1.5 enhanced the reaction yield (48%, entry 8), although a notable amount of bis-coupling product bis-4h was obtained (15%). Finally, carrying out the reaction in the presence of an excess of morpholine (5 equiv) had no significant change on the mono- (41%) and bis-coupling (21%) products' yields.

Table 2. Palladium-catalyzed amidation of 3-bromoquinolin-2(1*H*)-ones 1: synthesis of functionalized 3-(*N*-substituted)-aminoquinolin-2(1*H*)-ones 3^a

Entry	ArBr	Amide	Product 3		Yields ^b (%)
1	1a	H ₂ N O	H N Me O O Me	3a	95
2	1c	H ₂ N O	OMe NO CH ₂ CO ₂ Et	3b	87
3	la	H ₂ N Me	N N N N N N N N N N N N N N N N N N N	3c	92
4	la			3d	69
5	1a	H ₂ N Me	H N N Me	3e	60
6	1a	H ₂ N O	H H H O O Me	3f	46°
7	1d	H ₂ N O	Br H OMe	3g	44 ^d
8	1b	H ₂ N OBn	NHCO ₂ Bn	3h	57
9	1a	H ₂ N ₅ 000	NHSO ₂ <i>p</i> -Tol	3i	85
10	1b	H ₂ N _S	H N O Bn	3j	74

Table 2. (continued)

Entry	ArBr	Amide	Product 3		Yields ^b (%)	
11	1a	H ₂ N _S Me 0 [°] 0	NHSO ₂ Me N Me	3k	66	
12	1Ь	H ₂ N _S ^{Me} 0 [°] 0	NHSO ₂ Me N Bn	31	68	
13	1a	H ₂ N NH ₂	H H H N O O O N Bn Bn	3m	61	

^a Reactions of 1 (1.0 mmol) with amide/sulfonamide/carbamate/urea (1.5 mmol) were performed in a sealed Schlenk tube at 100 °C for 10 h in dioxane (2 mL) by using Pd(OAc)₂ (5 mol %), Xantphos (5 mol %) and Cs₂CO₃ (2 mmol).

^c No product resulting from the coupling of the C-OTs bond with 4-tosylbenzamide was detected.

^d A 27% yield of the corresponding bis-coupling compound was obtained.

3. Conclusion

We have demonstrated that the catalytic system used allows the first general C–N bond-forming reaction between 3-bromoquinolin-2(1H)-ones and various nucleophiles including amines, amides, sulfonamides, carbamates and ureas. Consequently, various 3-(N-substituted)-aminoquinolin-2(1H)-ones were prepared in good to excellent yields. Investigations on further expanding the scope of the method to other related heterocycles are in progress in our laboratory.

4. Experimental

4.1. Materials

All reactions were conducted under an argon atmosphere. Solvents: cyclohexane, ethyl acetate (EtOAc), methylene chloride (CH_2Cl_2) and methanol (MeOH) for extraction and chromatography were of technical grade. Diethylether (Et_2O) and tetrahydrofuran (THF) were distilled under argon from sodium–benzophenone ketyl, and piperidine, *n*-butylamine, aniline and morpholine from potassium hydroxide.

4.2. Instrumentation

The compounds were all identified by usual physical methods, i.e., ¹H NMR, ¹³C NMR, IR, elemental analysis. ¹H and ¹³C NMR spectra were measured in CDCl₃ or DMSO- d_6 on a 300 MHz spectrometer. ¹H chemical shifts are reported in parts per million from an internal standard TMS or of residual chloroform (7.27 ppm). The following abbreviations are used: m (multiplet), s (singlet), br s (broad singlet), d (doublet), t (triplet) dd (doublet of doublet), td (triplet of doublet), q (quadruplet), quint (quintuplet). ¹³C chemical shifts are reported in parts per million from the central peak of deuteriochloroform (77.14). IR spectra were acquired on a FTIR and are reported in wave numbers (cm⁻¹). Elemental analyzes were performed with a Perkin–

Elmer 240 analyzer. R_f values refer to TLC on 0.25 mm silica gel plates (60-F₂₅₄). Flash chromatography was performed on silica gel 60 (0.040–0.063 mm). Melting points (mp) were determined on a capillary melting point apparatus and were uncorrected. Amides, sulfonamides, amines, carbamates and ureas are commercially available compounds except *p*-tosylbenzamide that was synthesized as described. 3-Bromoquinolin-2-(1*H*)-one **1a** was synthesized as described.

4.3. Synthetic details for 3-bromoquinolin-2(1*H*)-one compounds 1b–d

4.3.1. Compound 1b. To a solution of 3-bromo-1-quinolin-2-one (0.5 g, 2.23 mmol) in DMF (2 mL) were added NaH (275 mg of a 65% oil dispersion, 7.44 mmol) and benzyl bromide (533 μ L, 4.46 mmol). The reaction mixture was stirred for 3 h at room temperature before being diluted with water and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over sodium sulfate and concentrated in vacuo. Purification of the residue by silica gel column chromatography (CH₂Cl₂/*c*-hexane: 6/4) yielded 644 mg of the desired product **1b**.

Yield: 92%; mp: 150–151 °C; TLC: R_f 0.5 (CH₂Cl₂/c-hexane: 9/1); IR (neat): 1646, 1591, 1557, 1494, 1436, 1363, 1289, 1214, 1149, 1069, 1028, 958, 932, 911, 799, 761, 726, 692, 622, 579 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.2 (s, 1H), 7.53 (dd, 1H, J_1 =7.8, J_2 =1.5 Hz), 7.47 (td, 1H, J_1 =8.7, J_2 =1.5 Hz), 7.4–7.1 (m, 7H), 5.62 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 158.7 (CO), 141.1, 138.8, 135.8, 130.9, 128.9 (2CH), 128.2, 127.5, 126.8 (2CH), 122.8, 120.8, 117.4, 115.2, 47.6 (CH₂); *m/z* MS (ES⁺) 336.0 (M+Na⁺, ⁷⁹Br), 338.0 (M+Na⁺, ⁸¹Br); Anal. Calcd for C₁₆H₁₂BrNO (313.01): C 61.17, H 3.85, N 4.46; found: C 61.01, H 3.73, N 4.34.

4.3.2. Compound 1c. A 100 mL round bottom flask was sequentially charged with NaH (65% oil dispersion, 447 mg,

^b Isolated yields.

		R ¹ N R 1	$\begin{array}{c c} HN(R')R'' \\ \hline Pd(OAc)_2 / \\ Xantphos, Cs_2CO_3, \\ dioxane \\ 100 ^{\circ}C, 10 h \end{array} \xrightarrow{R^1} \\ R \\ 4 \end{array}$	R" N R' TO		
Entry	ArBr	Amine	Product 4		Yields ^b (%)	
1	1a	H ₂ N	N N N N N N N N N N N N N N N N N N N	4a	93	
2	1c	H ₂ N	H N O CH ₂ COOEt	4b	89	
3	1a	H ₂ N	H N Me	4c	88	
4	1a	H ₂ N Me	H N Me	4d	74	
5	1a	H ₂ N<	H N Me	4e	60	
6	1a	H ₂ NBu	H N O Me	4f	83	
7	1b	HN	N N Bn	4g	76	
8	1d	HNO	Br N O Me	4h	48 ^c	

Table 3. Pd-catalyzed amination of 3-bromoquinolin-2(1H)-ones 1: synthesis of functionalized 3-(N-substituted)-aminoquinolin-2(1H)-ones 4^a

^a Reactions of **1** (1.0 mmol) with amine (1.5 mmol) were performed in a sealed Schlenk tube at 100 °C for 10 h in dioxane (2 mL) by using Pd(OAc)₂ (5 mol %), Xantphos (5 mol %) and Cs₂CO₃ (2 mmol).

^b Isolated yield.

^c A 15% yield of the corresponding bis-coupling compound was obtained.

12.1 mmol) and dry DMF (5 mL). The resulting suspension was cooled to 0 $^{\circ}$ C with an ice/water bath and a solution of 3-bromo-1-quinolin-2-one (1.0 g, 4.46 mmol) in dry DMF (25 mL) was slowly added over 10 min. The reaction mixture was allowed to stir for 30 min at 0 $^{\circ}$ C. Next, a solution of ethyl bromoacetate (1.49 g, 8.92 mmol) in dry DMF (5 mL) was added over 5 min. After 4 h of stirring at room

temperature, the reaction mixture was poured into a solution of brine (150 mL) and extracted with EtOAc (3×40 mL). The combined organic layers were then washed with brine (50 mL), dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude product by silica gel column chromatography (CH₂Cl₂) yielded 3.12 mmol of the desired product **1c**.

10207

Yield: 70%; mp: 151–152 °C; TLC: R_f 0.5 (CH₂Cl₂); IR (neat): 2964, 1736, 1645, 1593, 1558, 1497, 1448, 1417, 1373, 1348, 1298, 1210, 1192, 1084, 1053, 1023, 939, 927, 906, 861, 802, 767, 753, 732, 632, 574 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.08 (s, 1H), 7.52–7.42 (m, 2H), 7.18 (td, 1H, J_1 =8.0, J_2 =0.7 Hz), 7.00 (d, 1H, J=9.4 Hz), 5.05 (s, 2H), 4.15 (m, 2H), 1.19 (t, 3H, J=7.1 Hz); ¹³C NMR (75 MHz, DMSO- d_6): δ 167.6 (CO), 158.2 (CO), 141.4, 138.7, 131.1, 128.4, 123.0, 120.6, 116.9, 113.8, 61.9, 45.2, 14.1 (CH₂CH₃); *m*/*z* MS (ES⁺) 332.0 (M+Na⁺, ⁷⁹Br), 334.0 (M+Na⁺, ⁸¹Br); Anal. Calcd for C₁₃H₁₂BrNO₃ (309.00): C 50.34, H 3.90, N 4.52; found: C 49.90, H 3.70, N 4.37.

4.3.3. Compound 1d. To a solution of **1a** (0.5 g, 2.1 mmol) in acetic acid (6 mL) was added a solution of bromine (1.27 g, 8.2 mmol, 4 equiv) in acetic acid (30 mL) and the resulting solution was stirred at room temperature for 20 h. A white precipitate was filtered off, and the filtrate was concentrated. Purification of the residue by silica gel column chromatography (Et₂O) yielded 480 mg of compound **1d** as a white solid.

Yield: 72%; mp: 186–188 °C; TLC: R_f 0.42 (Et₂O); IR (neat): 3050, 1641, 1587, 1553, 1514, 1486, 1454, 1412, 1356, 1315, 1290, 1260, 1213, 1159, 1124, 1091, 1059, 1002, 946, 910, 896, 810, 796, 755, 742, 647, 619, 592, 561 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.20 (s, 1H), 7.78 (d, 1H, *J*=2.4 Hz), 7.65 (dd, 1H, *J*₁=9.0, *J*₂=2.4 Hz), 7.4 (d, 1H, *J*=9.0 Hz), 3.63 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 157.0 (CO), 139.6, 138.1, 133.3, 129.9, 121.5, 117.8, 117.3, 114.3, 31.0; *m*/*z* MS (ES⁺) 338.0 (M+Na⁺, ⁷⁹Br), 340.0 (M+Na⁺, ⁸¹Br); Anal. Calcd for C₁₀H₇Br₂NO (314.88): C 37.89, H 2.23, N 4.42; found: C 37.03, H 2.09, N 4.10.

4.4. General procedure for Pd-catalyzed couplings of 3-bromoquinolin-2(1*H*)-ones with various nucleophiles: amines, amides, sulfonamides, carbamates and ureas

A flame-dried resealable Schlenk tube was charged with $Pd(OAc)_2$ (7.5 mg, 0.05 mmol, 5 mol %), Xantphos (29 mg, 0.05 mmol, 5 mol %), the solid reactant(s) (1.0 mmol of the bromoquinolin-2(1H)-one, 1.5 mmol of the)amide/amines/carbamate/sulfonamide/urea) and Cs₂CO₃ (651 mg, 2 mmol). The Schlenk tube was capped with a rubber septum, evacuated and backfilled with argon; this evacuation/backfill sequence was repeated one additional time. The liquid reactant(s) and 1,4-dioxane (2 mL) were added through the septum. The septum was replaced with a Teflon screwcap. The Schlenk tube was sealed, and the mixture was stirred at 100 °C for 10 h. The resulting suspension was cooled to room temperature and filtred through Celite eluting with ethyl acetate, and the inorganic salts were removed. The filtrate was concentrated and purification of the residue by silica gel column chromatography gave the desired product.

4.4.1. Compound 3a. Yield: 95%; mp: 181–183 °C; TLC: R_f 0.74 (CH₂Cl₂/EtOAc: 8/2); IR (neat): 3375, 1669, 1638, 1619, 1598, 1576, 1527, 1494, 1465, 1421, 1377, 1327, 1296, 1255, 1217, 1177, 1115, 1023, 965, 947, 907, 858, 838, 800, 777, 752, 739, 716, 692, 621, 598, 559 cm⁻¹; ¹H

NMR (300 MHz, CDCl₃): δ 9.24 (s, 1H), 8.78 (s, 1H), 7.85 (d, 2H, *J*=9.0 Hz), 7.55 (dd, 1H, *J*₁=7.8, *J*₂=1.5 Hz), 7.40 (d, 1H, *J*₁=8.7, *J*₂=1.5 Hz), 7.27 (d, 1H, *J*=8.4 Hz), 7.19 (d, 1H, *J*₁=8.1, *J*₂=1.2 Hz), 6.69 (d, 2H, *J*=9.0 Hz), 3.79 (s, 3H), 3.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 165.3 (CO), 162.7, 158.2 (CO), 135.5, 129.1 (2CH), 128.9, 128.8, 127.9, 126.5, 123.1, 121.2, 120.1, 114.5 (2CH), 114.0, 55.5 (OCH₃), 30.3 (CH₃); *m/z* MS (ES⁺) 331.0 (M+Na⁺); Anal. Calcd for C₁₈H₁₆N₂O₃ (308.12): C 70.12, H 5.23, N 9.09; found: C 69.98, H 5.02, N 8.97.

4.4.2. Compound 3b. Yield: 87%; mp: 153–155 °C; TLC: R_f 0.39 (CH₂Cl₂); IR (neat): 3390, 1736, 1676, 1636, 1600, 1530, 1507, 1489, 1377, 1247, 1206, 1033, 843, 758, 759, 637, 624, 600 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 9.17 (s, 1H), 8.86 (s, 1H), 7.85 (d, 2H, *J*= 8.8 Hz), 7.59 (dd, 1H, *J*₁=7.7, *J*₂=1.1 Hz), 7.39 (td, 1H, *J*₁=8.5, *J*₂=1.4 Hz), 7.23 (d, 1H, *J*=7.3 Hz), 7.06 (d, 1H, *J*=8.4 Hz), 6.91 (d, 2H, *J*=8.8 Hz), 5.03 (s, 2H), 4.18 (q, 2H, *J*=7.1 Hz), 3.80 (s, 3H), 1.2 (t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 165.6 (CO), 165.4 (CO), 162.8, 158.2, 134.9, 129.1 (2CH), 128.9, 128.8, 127.6, 126.3, 123.5, 121.3, 121.1, 114.0 (2CH), 113.3, 61.9, 55.5, 44.7, 14.4; *m/z* MS (ES⁺) 404.0 (M+H⁺+Na⁺); Anal. Calcd for C₂₁H₂₀N₂O₅ (380.14): C 66.31, H 5.30, N 7.36; found: C 65.89, 5.19, N 7.28.

4.4.3. Compound 3c. Yield: 92%; mp: 177–179 °C; TLC: R_f 0.28 (CH₂Cl₂/EtOAc: 9/1); IR (neat): 3300, 1679, 1676, 1628, 1613, 1590, 1521, 1494, 1457, 1419, 1374, 1285, 1229, 1178, 1115, 1039, 1013, 943, 903, 847, 774, 751, 713, 641, 602, 581 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.62 (s, 1H), 8.50 (s, 1H), 7.51 (dd, 1H, J_1 =7.7, J_2 = 1.3 Hz), 7.40 (td, 1H, J_1 =8.6, J_2 =1.5 Hz), 7.25 (d, 1H, J= 8.3 Hz), 7.18 (td, 1H, J_1 =8.1, J_2 =1.0 Hz), 3.70 (s, 3H, CH₃),), 2.17 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 169.2 (CO), 157.8 (CO), 135.5, 128.6, 128.5, 127.6, 123.1, 121.0, 120.3, 113.9, 30.3 (CH₃), 24.8 (CH₃); m/z MS (ES⁺) 239 (M+Na⁺); Anal. Calcd for C₁₂H₁₂N₂O₂ (216.08): C 66.65, H 5.59, N 12.96; found: C 66.31, H 5.21, N 12.14.

4.4. Compound 3d. Yield: 69%; mp: 100–102 °C; TLC: $R_f 0.21$ (CH₂Cl₂/EtOAc: 7/3); IR (neat): 3524, 3423, 1674, 1624, 1592, 1461, 1411, 1303, 1267, 1225, 1200, 1147, 1128, 905, 858, 838, 793, 762, 739, 716, 692, 621, 598, 559 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.81 (s, 1H), 7.52–7.45 (m, 2H), 7.27 (d, 1H, J_1 =8.4 Hz), 7.18 (dt, 1H, J_1 =8.4, J_2 =1.0 Hz), 3.91 (t, 2H, J=7.2 Hz), 3.67 (s, 3H, CH₃), 2.50 (t, 2H, J=8.2 Hz), 2.15–2.00 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 175.7 (CO), 159.1 (CO), 138.7, 135.2, 130.4, 129.0, 128.5, 122.5, 119.8, 114, 48.9, 31.3, 29.9, 18.9; *m*/*z* MS (ES⁺) 243.0 (M+H⁺), 265.0 (M+Na⁺), 507.0 (2M+Na⁺); Anal. Calcd for C₁₄H₁₄N₂O₂ (242.10): C 69.41, H 5.82, N 11.56; found: C 68.87, H 5.17, N 11.19.

4.4.5. Compound 3e. Yield: 60%; mp: 188–189 °C; TLC: R_f 0.4 (CH₂Cl₂/EtOAc: 7/3); IR (neat): 3386, 3348, 1679, 1633, 1614, 1592, 1527, 1499, 1463, 1423, 1375, 1321, 1275, 1231, 1209, 1181, 1122, 1041, 1018, 945, 902, 853, 777, 743, 720, 703, 638 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 9.5 (s, 1H), 8.6 (s, 1H), 7.49–7.36 (m, 2H), 7.25 (d, 1H, J=8.3 Hz), 7.18 (td, 1H, J_1 =7.6, J_2 =0.9 Hz), 4.37 (m,

1H), 3.66 (s, 3H, CH₃), 3.57 (d, 1H, J=4.2 Hz), 1.41 (d, 3H, J=6.8 Hz, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 174.1 (CO), 157.9 (CO), 135.7, 128.8, 128.7, 127.0, 123.1, 120.9, 120.8, 113.9, 69.0, 30.2 (CH₃), 21.0 (CH₃); m/z MS (ES⁺) 269 (M+Na⁺); Anal. Calcd for C₁₃H₁₄N₂O₃ (246.10): C 63.40, H 5.73, N 11.38, found: C 62.89, H 5.32, N 11.08.

4.4.6. Compound 3f. Yield: 46%; mp: 144–146 °C; TLC: R_f 0.71 (CH₂Cl₂/EtOAc: 9/1); IR (neat): 3371, 1669, 1636, 1619, 1596, 1489, 1365, 1202, 1178, 1151, 1091, 1013, 905, 866, 766, 747, 680, 570 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 9.28 (s, 1H), 8.77 (s, 1H), 7.81 (d, 2H, *J*= 8.7 Hz), 7.64 (d, 2H, *J*=8.3 Hz), 7.57 (dd, 1H, *J*₁=8.7, *J*₂=1.0 Hz), 7.44 (td, 1H, *J*₁=8.4, *J*₂=1.3 Hz), 7.33–7.18 (m, 4H), 7.04 (d, 2H, *J*=8.7 Hz), 3.57 (s, 3H), 2.39 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 164.6 (CO), 158.1, 152.3, 145.8, 135.7, 132.9, 131.9, 129.9 (2C), 128.9 (3C), 128.8, 128.5 (2C), 127.5, 123.3, 122.8 (2C), 120.9, 120.8, 114.0, 30.4 (OCH₃), 21.8 (CH₃); *m/z* MS (ES⁺) 449.0 (M+H⁺), 471 (M+Na⁺); Anal. Calcd for C₂₄H₂₀N₂O₅S (448.10): C 64.27, H 4.49, N 6.25; found: C 63.98, H 4.01, N 5.87.

4.4.7. Compound 3g. Yield: 44%; mp: 191–193 °C; TLC: R_f 0.6 (CH₂Cl₂); IR (neat): 3343, 1631, 1619, 1526, 1505, 1461, 1425, 1359, 1334, 1250, 1218, 1173, 1029, 874, 838, 800, 596, 564 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 9.31 (s, 1H), 8.77 (s, 1H), 7.91 (d, 2H, *J*=8.8 Hz), 7. 47 (d, 1H, *J*=2.2 Hz), 7.55 (dd, 1H, *J*₁=8.9, *J*₂=2.2 Hz), 7.22 (d, 1H, *J*=8.9 Hz), 6.98 (d, 2H, *J*=8.8 Hz), 3.88 (s, 3H), 3.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 165.4 (CO), 162.9, 157.9 (CO), 134.4, 131.1, 130.6, 129.2 (2CH), 128.8, 126.2, 122.9, 118.6, 116.1, 115.6, 114.1 (2CH), 55.5 (OCH₃), 30.5 (CH₃); *m*/z MS (ES⁺) 409.0 (M+Na⁺, ⁷⁹Br), 411.0 (M+Na⁺, ⁸¹Br); Anal. Calcd for C₁₈H₁₅BrN₂O₃ (386.02): C 55.83, H 3.90, N 7.23; found: C 55.28, H 3.66, N 7.08.

4.4.8. Compound bis-3g. Yield: 27%; mp: 256–258 °C; TLC: R_f 0.15 (Et₂O); IR (neat): 3387, 3274, 2924, 1734, 1672, 1638, 1603, 1578, 1524, 1490, 1364, 1251, 1180, 1052, 858, 841, 804, 756, 732, 677, 610, 596, 559 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 10.24 (s, 1H), 9.41 (s, 1H), 8.64 (s, 1H), 8.14 (d, 1H, *J*=2.2 Hz), 7.99 (d, 2H, *J*= 8.7 Hz), 7.93–7.89 (m, 3H), 7.56 (d, 1H, *J*=8.2 Hz), 7.11– 7.06 (m, 4H), 3.85 (s, 6H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.8 (CO), 164.4 (CO), 162.3, 161.9, 156.9 (CO), 134.6, 131.7, 129.5 (2CH), 129.1 (2CH), 127.8, 126.7, 125.8, 121.8, 120.1, 119.7, 118.4, 114.9, 114.1 (2CH), 113.6 (2CH), 55.5 (OCH₃), 55.4 (OCH₃), 30.1 (CH₃); *m*/*z* MS (ES⁺) 480.0 (M+Na⁺); Anal. Calcd for C₂₆H₂₃N₃O₅ (457.16): C 68.26, H 5.07, N 9.19; found: C 67.79, H 4.88, N 8.88.

4.4.9. Compound 3h. Yield: 57%; mp: 136–138 °C; TLC: R_f 0.71 (CH₂Cl₂); IR (neat): 3266, 1717, 1633, 1622, 1601, 1532, 1490, 1455, 1388, 1364, 1342, 1316, 1256, 1217, 1197, 1129, 1086, 1052, 1027, 993, 974, 940, 926, 906, 887, 847, 772, 744, 730, 637, 563 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆): δ 8.46 (s, 1H), 8.16 (s, 1H), 7.61 (dd, 1H, J_1 =7.7, J_2 =0.9 Hz), 7.48–7.18 (m, 13H), 5.63 (s, 2H, CH₂Bn), 5.28 (s, 2H, CH₂Bn); ¹³C NMR (75 MHz, DMSO-*d*₆): δ 157.9 (CO), 153.4 (CO), 135.9, 135.8,

134.8, 128.8 (2C), 128.6 (2C), 128.4 (2C), 128.3 (2C), 128.2, 127.7, 127.5 (2C), 126.5, 123.1, 121.3, 118.9, 114.7, 67.2 (CH_2Bn), 46.8 (CH_2Bn); m/z MS (ES^+) 407.0 (M+Na⁺); Anal. Calcd for $C_{24}H_{20}N_2O_3$ (384.14): C 74.98, H 5.24, N 7.29; found: C 74.09, H 5.07, N 7.11.

4.4.10. Compound 3i. Yield: 85%; mp: 167–169 °C; TLC: $R_f 0.56$ (CH₂Cl₂/EtOAc: 7/3); IR (neat): 3167, 1640, 1618, 1595, 1541, 1507, 1465, 1435, 1418, 1366, 1338, 1308, 1275, 1231, 1189, 1157, 1112, 1090, 1036, 909, 947, 888, 866, 816, 772, 749, 735, 724, 663, 638, 556 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.99 (s, 1H), 7.74–7.70 (m, 3H), 7.47 (d, 1H, J_1 =7.8, J_2 =1.2 Hz), 7.39 (td, 1H, J_1 = 8.4, J_2 =1.2 Hz), 7.38–7.13 (m, 3H), 4.94 (s, 1H), 3.62 (s, 3H, CH₃), 2.26 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 157.6 (CO), 144.2, 136.0, 135.9, 129.8 (2CH), 128.9, 128.3, 127.2 (2C), 126.9, 123.2, 120.3, 118.9, 114.0, 30.4 (CH₃), 21.5 (CH₃); m/z MS (ES⁺) 329.0 (M+H⁺), 351 (M+Na⁺); Anal. Calcd for C₁₇H₁₆N₂O₃S (328.08): C 62.18, H 4.91, N 8.53; found: C 61.83, H 4.59, N 8.27.

4.4.11. Compound 3j. Yield: 74%; mp: 216–218 °C; TLC: $R_f 0.64$ (CH₂Cl₂); IR (neat): 3174, 2923, 2854, 1630, 1616, 1597, 1502, 1448, 1432, 1371, 1341, 1319, 1279, 1261, 1216, 1185, 1163, 1119, 1090, 1015, 941, 917, 865, 804, 773, 752, 729, 719, 690, 648, 627 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ 9.88 (s, 1H), 7.95–7.90 (m, 3H), 7.78 (d, 1H, *J*=7.7 Hz), 7.66 (t, 1H, *J*=7.4 Hz), 7.59–7.52 (m, 2H), 7.41 (t, 1H, *J*=7.3 Hz), 7.32 (d, 1H, *J*=8.5 Hz), 7.28–7.19 (m, 4H), 6.97 (d, 2H, *J*=6.8 Hz), 5.47 (s, 2H, CH₂Bn); ¹³C NMR (75 MHz, DMSO- d_6): δ 157.5 (CO), 139.4, 136.2, 135.6, 133.1, 129.4, 129.1 (2C), 128.6 (3C), 127.1, 126.9 (2C), 126.7 (2C), 126.4, 124.2, 122.8, 119.7, 114.9, 45.4 (CH₂Bn); *m/z* MS (ES⁺) 413.0 (M+Na⁺); Anal. Calcd for C₂₂H₁₈N₂O₃S (390.10): C 67.67, H 4.65, N 7.17; found: C 67.39, H 4.16, N 6.92.

4.4.12. Compound 3k. Yield: 66%; mp: 198–199 °C; TLC: $R_f 0.24$ (*c*-hexane/EtOAc: 6/4); IR (neat): 3156, 2926, 2854, 1729, 1642, 1621, 1598, 1507, 1447, 1417, 1419, 1361, 1335, 1317, 1280, 1219, 1184, 1146, 1110, 1073, 1040, 981, 968, 921, 894, 869, 858, 780, 755, 712, 658, 634, 556 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.76 (s, 1H), 7.72 (s, 1H), 7.53 (dd, 1H, J_1 =7.8, J_2 =1.1 Hz), 7.47 (td, 1H, J_1 =8.6, J_2 =1.4 Hz), 7.31 (d, 1H, J=8.4 Hz), 7.24 (td, 1H, J_1 =7.8, J_2 =0.6 Hz), 3.75 (s, 3H, CH₃), 2.99 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 157.8 (CO), 136.1, 129.2, 128.5, 127.2, 123.4, 120.3, 119.5, 114.2, 39.4, 30.5. *m*/*z* MS (ES⁺) 275.0 (M+Na⁺); Anal. Calcd for C₁₁H₁₂N₂O₃S (252.05): C 52.37, H 4.79, N 11.10; found: C 51.82, H 4.33, N 10.86.

4.4.13. Compound 31. Yield: 68%; mp: 180–182 °C; TLC: R_f 0.50 (CH₂Cl₂); IR (neat): 3179, 1615, 1599, 1583, 1499, 1441, 1367, 1353, 1315, 1278, 1223, 1148, 1119, 1041, 1015, 974, 943, 899, 870, 776, 749, 724, 692, 661, 628 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.81 (s, 1H), 7.71 (br s, 1H), 7.54 (dd, 1H, J_1 =7.8, J_2 =1.1 Hz), 7.33 (dd, 1H, J_1 =8.4, J_2 =1.3 Hz), 7.27–7.11 (m, 7H), 5.55 (s, 2H), 3.04 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 158.0 (CO), 135.5 (2C), 129.2, 128.9 (2C), 128.6, 127.6, 127.2, 126.5 (2C), 123.4, 120.5, 119.7, 115.0, 47.1, 39.5; m/z MS (ES⁺) 351.0 (M+Na⁺); Anal. Calcd for

 $C_{17}H_{16}N_2O_3S$ (328.08): C 62.18, H 4.91, N 8.53; found: C 61.83, H 4.67, N 8.10.

4.4.14. Compound 3m. Yield: 61%; mp: 164–165 °C; TLC: R_f 0.4 (Et₂O/*c*-hexane: 1/1); IR (neat): 3465, 3225, 1702, 1633, 1616, 1525, 1492, 1386, 1237, 1207, 902, 755, 747, 725, 695, 570 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 10.03 (s, 2H, NH), 8.67(s, 2H), 7.72 (d, 2H, *J*=2.2 Hz), 7.40–7.22 (m, 16H), 5.65 (s, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 157.5 (2CO), 152.9 (CO), 136.5 (2C), 134.1 (2C), 128.9 (2C), 128.7 (4CH), 127.9 (2C), 127.8 (2C), 121.1 (2C), 126.5 (4CH), 122.8 (2C), 120.9 (2C), 118.2 (2C), 114.8 (2C), 45.6 (2×CH₂Bn); *m/z* MS (ES⁺) 549.0 (M+Na⁺); Anal. Calcd for C₃₃H₂₆N₄O₃ (526.20): C 75.27, H 4.98, N 10.64; found: C 74.89, H 4.69, N 10.44.

4.4.15. Compound 4a. Yield: 93%; mp: 95–97 °C; TLC: R_f 0.79 (CH₂Cl₂); IR (neat): 3304, 2925, 1599, 1581, 1521, 1490, 1462, 1444, 1415, 1369, 1110, 931, 902, 774, 734, 705, 623, 559 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.34–7.09 (m, 10H), 6.97 (t, 1H, *J*=7.3 Hz), 3.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.7, 140.7, 133.9, 132.7, 129.5 (2CH), 126.4, 125.9, 122.8, 122.6, 122.1, 120.1 (2CH), 113.8, 106.9, 30.4; *m*/*z* MS (ES⁺) 273.0 (M+Na⁺), 289.0 (M+K⁺); Anal. Calcd for C₁₆H₁₄N₂O (250.11): C 76.78, H 5.64, N 11.19; found: C 76.49, H 5.47, N 11.09.

4.4.16. Compound 4b. Yield: 89%; mp: 153–154 °C; TLC: $R_f 0.45$ (CH₂Cl₂); IR (neat): 3291, 1733, 1617, 1587, 1531, 1504, 1464, 1447, 1424, 1377, 1348, 1211, 1123, 1016, 865, 803, 740, 690, 594, 570 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.37–6.96 (m, 11H), 5.10 (s, 2H), 4.18 (q, 2H, *J*=7.1 Hz), 1.20 (t, 3H, *J*=7.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 168.0, 158.7, 140.5, 133.2, 132.5, 129.5 (2CH), 126.7, 126.1, 123.2, 122.8, 122.2, 120.3 (2CH), 113.2, 107.7, 61.8, 44.8, 14.2; *m/z* MS (ES⁺) 345.0 (M+Na⁺); Anal. Calcd for C₁₉H₁₈N₂O₃ (322.13): C 70.79, H 5.63, N 8.69; found: C 70.47, H 5.49, N 8.47.

4.4.17. Compound 4c. Yield: 88%; mp: 133–135 °C; TLC: $R_f 0.68$ (CH₂Cl₂); IR (neat): 3355, 2928, 1615, 1598, 1509, 1488, 1453, 1418, 1377, 1355, 1324, 1295, 1025, 986, 822, 777, 745, 735, 720, 691, 620, 600 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.31–7.17 (m, 8H), 7.05 (m, 1H), 6.34 (s, 1H), 5.60 (t, 1H, *J*=5.2 Hz), 4.34 (d, 2H, *J*= 5.8 Hz), 3.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.6, 138.2, 136.7, 133.2, 128.7 (2CH), 127.3, 127.2 (2CH), 125.8, 124.8, 122.8, 122.6, 113.6, 104.1, 47.3, 30.1; *m/z* MS (ES⁺) 287.0 (M+Na⁺), 303.0 (M+K⁺); Anal. Calcd for C₁₇H₁₆N₂O (264.12): C 77.25, H 6.10, N 10.60; found: C 77.08, H 6.01, N 10.23.

4.4.18. Compound 4d. Yield: 74%; mp: 163–164 °C; TLC: $R_f 0.6$ (CH₂Cl₂); IR (neat): 3408, 2973, 1615, 1594, 1509, 1476, 1413, 1365, 1326, 1242, 1204, 1117, 1090, 1040, 852, 827, 804, 779, 754, 742, 647, 559 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.10 (d, 1H, *J*=8.4 Hz), 7.83 (dd, 1H, *J*₁=7.9, *J*₂=1.4 Hz), 7.66 (d, 1H, *J*=8.2 Hz), 7.53–7.41 (m, 3H), 7.30 (t, 1H, *J*=7.7 Hz), 7.16–7.08 (m, 2H), 6.99–6.89 (m, 2H), 5.96 (s, 1H), 5.70 (d, 1H, *J*=5.3 Hz), 5.21 (m, 1H), 3.72 (s, 3H), 1.65 (d, 3H, *J*=6.7 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 158.6 (CO), 138.7, 135.5, 134.1, 133.1, 130.7, 129.2, 127.7, 126.2 125.9, 125.8

125.5, 124.7, 122.7, 122.5 (2C), 122.2, 113.7, 105.0, 49.3, 30.1, 23.5; m/z MS (ES⁺) 351.0 (M+Na⁺); Anal. Calcd for C₂₂H₂₀N₂O (328.15): C 80.46, H 6.14, N 8.53; found: C 89.88, H 6.09, N 8.33.

4.4.19. Compound 4e. Yield: 60%; mp: 98–99 °C; TLC: R_f 0.48 (CH₂Cl₂); IR (neat): 3334, 2941, 1633, 1597, 1510, 1485, 1460, 1414, 1370, 1336, 1252, 1193, 1040, 1022, 979, 863, 824, 779, 741, 614 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.40 (d, 1H, *J*=7.5 Hz), 7.24–7.09 (m, 3H), 6.77 (s, 1H), 5.36 (s, 1H), 3.71 (s, 3H), 2.40 (m, 1H), 0.75–0.72 (m, 2H), 0.54–0.51 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 158.5 (CO), 137.6, 133.4, 128.8, 125.8, 122.9, 122.6, 113.8, 105.1, 30.0, 24.3, 6.9 (2C); *m/z* MS (ES⁺) 215 (M+H⁺) 237.0 (M+Na⁺), 451.0 (2M+Na⁺); Anal. Calcd for C₁₃H₁₄N₂O (214.11): C 72.87, H 6.59, N 13.07; found: C 72.02, H 6.34, N 12.79.

4.4.20. Compound 4f. Yield: 83%; mp: 89–90 °C; TLC: R_f 0.45 (CH₂Cl₂); IR (neat): 3334, 2955, 2865, 1632, 1607, 1594, 1509, 1489, 1461, 1417, 1388, 1366, 1319, 1263, 1236, 1205, 1142, 1080, 1042, 918, 847, 824, 805, 778, 729, 645, 576 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.34 (dd, 1H, J_1 =8.3, J_2 =1.1 Hz), 7.20–7.07 (m, 3H), 6.35 (s, 1H), 5.1 (br s, 1H, NH), 3.71 (s, 3H), 3.09 (q, 2H, J= 6.8 Hz), 1.64–1.56 (m, 2H), 145–1.33 (m, 2H), 0.90 (t, 3H, J=7.3 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 158.6, 137.1, 132.9, 125.5, 124.4, 123.1, 122.6, 113.7, 102.9, 42.8, 30.8, 30.1, 20.4, 13.9; m/z MS (ES⁺) 231.0 (M+H⁺), 253.0 (M+Na⁺); Anal. Calcd for C₁₄H₁₈N₂O (230.14): C 73.01, H 7.88, N 12.16; found: C 72.87, H 7.67, N 12.01.

4.4.21. Compound 4g. Yield: 76%; mp: 125–127 °C; TLC: $R_f 0.29$ (CH₂Cl₂); IR (neat): 2941, 1630, 1593, 1495, 1455, 1382, 1338, 1301, 1279, 1238, 1185, 1120, 1029, 995, 1034, 885, 858, 736, 718, 696, 670, 620 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.39 (dd, 1H, J_1 =7.5, J_2 =1.2 Hz), 7.22–7.10 (m, 7H), 7.05 (td, 1H, J_1 =8.1, J_2 =1.6 Hz), 6.93 (s, 1H), 5.50 (s, 2H), 3.13–3.08 (m, 4H), 1.75–1.68 (m, 4H), 158–1.51 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 159.8, 143.0, 136.6, 135.6, 128.7 (2C), 127.2 (2C), 127.1, 126.7 (2C), 122.3, 121.7, 119.0, 114.5, 51.1 (2C), 46.6, 25.9 (2C), 24.5; m/z MS (ES⁺) 341.0 (M+Na⁺), 357.0 (M+K⁺); Anal. Calcd for C₂₁H₂₂N₂O (318.17): C 79.21, H 6.96, N 8.80; found: C 78.88, H 6.77, N 8.69.

4.4.22. Compound 4h. Yield: 48%; mp: 141–143 °C; TLC: $R_f 0.1 (CH_2Cl_2)$; IR (neat): 2812, 1634, 1612, 1588, 1493, 1447, 1421, 1377, 1305, 1263, 1226, 1204, 1118, 1059, 1011, 910, 895, 803, 778, 759, 686, 665, 570 cm⁻¹; ¹H NMR (300 MHz, CDCl_3): δ 7.61 (d, 1H, *J*=2.2 Hz), 7.48 (dd, 1H, *J*₁=8.9, *J*₂=2.2 Hz), 7.18 (d, 1H, *J*=8.9 Hz), 6.82 (s, 1H), 3.94–3.90 (m, 4H), 3.72 (s, 3H), 3.27–3.23 (m, 4H); ¹³C NMR (75 MHz, CDCl_3): δ 158.9, 142.4, 135.0, 130.0, 129.2, 122.8, 116.8, 115.4, 115.2, 66.8 (2C), 49.8 (2C), 30.1; *m*/*z* MS (ES⁺) 345.0 (M+Na⁺, ⁷⁹Br), 347.0 (M+Na⁺, ⁸¹Br); Anal. Calcd for C₁₄H₁₅BrN₂O₂ (322.03): C 52.03, H 4.68, N 8.67; found: C 51.97, H 4.31, N 8.36.

4.4.23. Compound bis-4h. The compound is not sufficiently stable to be fully characterized. Yield: 15%; TLC: R_f 0.13 (CH₂Cl₂); IR (neat): 2922, 2853, 1637, 1618, 1597, 1568, 1436, 1372, 1321, 1260, 1236, 1203, 1113, 1064, 1009,

931, 898, 801, 781, 704, 659 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.19 (d, 1H, *J*=9.1 Hz), 7.02 (dd, 1H, *J*₁=9.1, *J*₂=2.6 Hz), 6.88 (d, 1H, *J*=2.6 Hz), 6.82 (s, 1H), 3.85–3.80 (m, 8H), 3.66 (s, 3H), 3.19–3.14 (m, 4H), 3.13–3.06 (m, 4H); *m/z* MS (ES⁺) 352.0 (M+Na⁺).

Acknowledgements

The CNRS is gratefully acknowledged for support of this research and the European Community for a doctoral fellowship to D.A.

References and notes

- (a) Rowely, M.; Kulagpwski, J. J.; Watt, A. P.; Rathbone, D.; Stevenson, G. R.; Carling, R. W.; Baker, R.; Leeson, P. D.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Saywell, K. L.; Tricklebank, M. D.; Hargreaves, R.; Hurley, C. J. Med. Chem. 1997, 40, 4053–4068; (b) De Vita, R. J.; Hollings, D. D.; Goulet, M. T.; Wyvratt, M. J.; Fischer, M. H.; Lo, J. L.; Yang, Y. T.; Cheng, K.; Smith, R. G. Bioorg. Med. Chem. Lett. 1999, 9, 2615–2620; (c) Kreimeyer, A.; Laube, B.; Sturgess, M.; Goeldner, M.; Foucaud, B. J. Med. Chem. 1999, 42, 4394–4404; (d) Kim, F. S. Y.; Yoon, E.-J.; Choi, E.-C.; Kim, S.; Kang, T.; Samrin, F.; Puri, S.; Lee, J. Bioorg. Med. Chem. 2006, 14, 7154–7159.
- (a) Afonso, A.; Weinstein, J.; Gentles, M. WO 9204326, 1992; *Chem. Abstr.* 1992, *117*, 26358; (b) Afonso, A.; Weinstein, J.; Gentles, M. J.; Margaret, J.; Rosenblum, S. B. WO 9204328, 1992; *Chem. Abstr.* 1992, *117*, 90161; (c) Tedesco, R.; Shaw, A. N.; Bambal, R.; Chai, D.; Concha, N. O.; Darcy, M. G.; Dhanak, D.; Fitch, D. M.; Gates, A.; Gerhardt, W. G.; Halegoua, D. L.; Han, C.; Hofmann, G. A.; Johnston, V. K.; Kaura, A. C.; Liu, N.; Keenan, R. M.; Lin-Goerke, J.; Sarisky, R. T.; Wiggall, K. J.; Zimmerman, M. N.; Duffy, K. J. J. Med. Chem. 2006, 49, 971–983.
- (a) Hasegawa, S.; Matsunaga, K.; Muto, M.; Hanada, S. JP Patent 02032086, 1990; *Chem. Abstr.* **1991**, *114*, 34897; (b) Thal, C.; Boye, O.; Guenard, D.; Potier, P. WO 9002733, 1990; *Chem. Abstr.* **1990**, *113*, 115077.
- (a) Hewawasam, P.; Fan, W.; Ding, M.; Flint, K.; Cook, D.; Goggings, G. D.; Myers, R. A.; Gribkoff, V. K.; Boissard, C. G.; Dworetzky, S. I.; Starret, J. E.; Lodge, N. J. J. Med. Chem. 2003, 46, 2819–2822; (b) Boy, K. M.; Guernon, J. M.; Sit, S.-Y.; Xie, K.; Hewawasam, P.; Boissard, C. G.; Dworetzky, S. I.; Natale, J.; Gribkoff, V. K.; Lodge, N.; Starret, J. E. Bioorg. Med. Chem. Lett. 2004, 14, 5089–5093; (c) Hewawasam, P.; Fan, W.; Cook, D. A.; Newberry, K. S.; Boissard, C. B.; Gribkoff, V. K.; Starret, J.; Lodge, N. J. Bioorg. Med. Chem. Lett. 2004, 14, 4479–4482; (d) Angibaud, P. R.; Venet, M. G.; Filliers, W.; Broeckx, R.; Ligny, Y. A.; Muller, P.; Poncelet, V. S.; End, D. W. Eur. J.

Org. Chem. **2004**, 479–486; (e) Andresen, B. M.; Couturier, M.; Cronin, B.; D'Occhio, M.; Ewing, M. D.; Guinn, M.; Hawkins, J. M.; Jasys, V. J.; LaGreca, S. D.; Lyssikatos, J. P.; Moraski, G.; Ng, K.; Raggon, J. W.; Stewart, A. M.; Tickner, D. L.; Tucker, J. L.; Urban, F. J.; Vazquez, E.; Wei, L. *Org. Process Res. Dev.* **2004**, *8*, 643–650.

- (a) Williams, A. C.; Camp, N. Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Bellus, D., Ley, S. V., Noyori, R., Regitz, M., Schaumann, E., Shinkai, E., Thomas, E. J., Trost, B. M., Reider, P. J., Series Eds.; Thomas, E. J., Volume Ed.; Thieme: Stuttgart, Germany, 2004; Vol. 14, pp 347–438; (b) Kadnikov, D. V.; Larock, R. C. J. Org. Chem. 2004, 69, 6772–6780; (c) Manley, P. J.; Bilodeau, M. T. Org. Lett. 2004, 6, 2433–2435; (d) Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org. Chem. 2005, 70, 3864–3870; (e) Dittmer, D. C.; Li, Q.; Avilov, D. V. J. Org. Chem. 2005, 70, 4682–4686.
- Calabri, F. R.; Colotta, V.; Catarzi, D.; Varano, F.; Lenzi, O.; Filacchioni, G.; Costagli, C.; Galli, A. *Eur. J. Med. Chem.* 2005, 40, 897–907.
- Raitio, K. H.; Savinainen, J. R.; Vepsäläinen, J.; Laitinen, J. T.; Poso, A.; Järvinen, T.; Nevalainen, T. J. Med. Chem. 2006, 49, 2022–2027.
- 8. Janin, Y. L. J. Med. Chem. 2005, 48, 7503-7512.
- (a) Hartwig, J. F. Handbook of Organopalladium Chemistry for Organopalladium Chemistry of Organic Synthesis; Wiley-Interscience: New York, NY, 2002; Vol. 1, pp 1051–1096; (b) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131–209.
- For reviews, see: (a) Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599–1626; (b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–4211; For some recent examples, see: (c) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861–2873; (d) Peng, Z.-H.; Journet, M.; Humphrey, G. Org. Lett. 2006, 8, 395–398; (e) Enguehard-Gueiffier, C.; Thery, I.; Gueiffier, A.; Buchwald, S. L. Tetrahedron 2006, 62, 6042–6049; (f) Margolis, B. J.; Long, K. A.; Laird, D. L. T.; Ruble, J. C.; Pulley, S. R. J. Org. Chem. 2007, 72, 2232–2235.
- For the coupling of related compounds, see: (a) Dijkstra, H. P.; Gaulon, C.; Dan Niculescu-Duvaz, D.; Springer, C. J. Synlett 2006, 1519–1522; (b) El Kazzouli, S.; Lavecchia, G.; Berteina-Raboin, S.; Guillaumet, G. Tetrahedron Lett. 2006, 47, 4437–4440; (c) Fang, W. P.; Cheng, Y. T.; Cheng, Y. R.; Cherng, Y. J. Tetrahedron 2005, 61, 3107–3113; (d) Catherine Gaulon, C.; Dijkstra, H. P.; Springer, C. J. Synthesis 2005, 2227–2233.
- 12. Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101-1104.
- Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Jan Fraanje, K. G. Organometallics 1995, 14, 3081–3089.
- Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653–6655.